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OBJECTIVES: According to the 2007 National Research Council report Toxicology for the Twenty-First
Century, modern methods (e.g., “omics,” in vitro assays, high-throughput testing, computational
methods) will lead to the emergence of a new approach to toxicology. The Sa/monella mammalian
microsome mutagenicity assay has been central to the field of genetic toxicology since the 1970s.
Here we document the paradigm shifts engendered by the assay, the validation and applications of
the assay, and how the assay is a model for future i vitro toxicology assays.

DATA SOURCES: We searched PubMed, Scopus, and Web of Knowledge using key words relevant to
the Salmonella assay and additional genotoxicity assays.

DATA EXTRACTION: We merged the citations, removing duplicates, and categorized the papers by
year and topic.

DATA SYNTHESIS: The Salmonella assay led to two paradigm shifts: that some carcinogens were
mutagens and that some environmental samples (e.g., air, water, soil, food, combustion emissions)
were mutagenic. Although there are > 10,000 publications on the Salmonella assay, covering tens of
thousands of agents, data on even more agents probably exist in unpublished form, largely as pro-
prietary studies by industry. The Salmonella assay is a model for the development of 21st century
in vitro toxicology assays in terms of the establishment of standard procedures, ability to test various

agents, transferability across laboratories, validation and testing, and structure-activity analysis.

CONCLUSIONS: Similar to a stethoscope as a first-line, inexpensive tool in medicine, the Salmonella
assay can serve a similar, indispensable role in the foreseeable future of 21st century toxicology.

KEY WORDS: Ames assay, carcinogenicity, 21st century toxicology, genetic toxicology, high-
throughput assays, Salmonella assay, Salmonella mutagenicity assay. Environ Health Perspect
118:1515-1522 (2010). doi:10.1289/ehp.1002336 [Online 2 August 2010]

Every day throughout the world, physicians,
nurses, and an array of other health profes-
sionals use a stethoscope, which was invented
by René Laennec in 1816 (Weinberg 1993). It
is a relatively simple instrument whose sounds
can indicate a myriad of disease states that
can then be confirmed by more sophisticated
assessments. It is hard to visualize a physician
or imagine medicine without the stethoscope.
Similarly, the Salmonella mutagenicity assay,
which was developed initially as a spot test
(Ames 1971), then as a plate-incorporation
test (Ames et al. 1972) using strains of
Salmonella bacteria derived from studies by
B.N. Ames and P.E. Hartman (Hartman et al.
1986) and rodent liver microsomal activation
coupled initially to the assay by H.V. Malling
(Malling 1971), is a deceptively simple tool
that can be used to detect the mutagenicity
of environmental chemicals, environmen-
tal mixtures, body fluids, foods, drugs, and
physical agents. More complex tests can be
applied to confirm and characterize further
the mutagenic activity of the agent. Although
neither the stethoscope nor the Salmonella
assay provides a definitive diagnosis/detection
of a disease or a mutagen, respectively, both
are indispensible first-line tools in their fields.
There is much unrest in the field of toxi-
cology today because of a variety of scientific
developments, including advances in genomic
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science (Parsons et al. 2008; Wood et al.
2007), improved knowledge of the molecular
and mechanistic basis for biological responses
to toxicant exposure (Guyton et al. 2009),
legislation mandating reduced numbers of
animals for toxicology testing (Pfuhler et al.
2009), and governmental direction to incor-
porate all of the above into a new paradigm
for toxicology for the 21st century (National
Research Council 2007).

A strict parallel cannot be drawn between
a targeted testing assay such as the Salmonella
assay, which is used for hazard identifica-
tion, and a high-throughput screening (HTS)
assay such as either the ToxCast program
[U.S. Environmental Protection Agency
(EPA)] or the combined U.S. EPA/National
Institutes of Health (NIH)/National Institute
of Environmental Health Sciences (NIEHS)/
National Toxicology Program (NTP) Tox21
program (Kavlock et al. 2009), which can
identify specific signaling or biochemical path-
ways relevant to potential disease develop-
ment and thus have the possibility of going
beyond hazard identification. An assay like the
Salmonella assay is a stand-alone screen that
requires high accuracy and reproducibility and
is correlated with health end points, permit-
ting its use for regulatory purposes. In con-
trast, HTS assays use emerging technologies
and rtarget probes, knowledge of biochemical
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and disease pathways in rodents and humans,
genomics, and other technologies to generate
a profile or pattern of effects across a range of
chemical classes and biological end points that
do not depend greatly on any particular chemi-
cal or assay result. As with the Salmonella assay,
HTS assays are viewed as a first-line screening
tool, with results of interest being followed up
by more extensive confirmatory assays.

In the process of developing and adopt-
ing new methods, it is important to build
on and learn from past paradigm shifts, sev-
eral of which occurred in the field of genetic
toxicology with the introduction of the
Salmonella assay. Consequently, the history
of the Salmonella assay highlights some of the
necessary steps and considerations needed for
the development of almost any type of toxi-
cology assay, including some aspects of HTS
assays. Our purpose with this review is to
) describe the paradigm shifts precipitated by
the Salmonella assay, including the demonstra-
tion of a connection between mutagenicity
and carcinogenicity and the ubiquitous nature
of mutagens in our environment; ) document
the historic and current applications of the
Salmonella assay; and ¢) illustrate the lessons
learned from the development, validation, test-
ing, assessment, and uses of this in vizro assay
that may be applicable to the development of
in vitro toxicology assays for the 21st century.
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Paradigm Shift I: Relating
Mutagenic Activity to
Carcinogenic Activity

By the middle of the 20th century, there
was almost no evidence to support a role
for mutation in cancer, and few carcinogens
were known to be mutagens (Burdette 1955).
However, at this time efforts began to screen
carcinogens and other chemicals for muta-
genicity in vitro, starting with the use of a
base-substitution strain of Escherichia coli by
Demerec et al. (1951) and then by Szybalski
(1958), who assessed > 400 compounds
using filter-paper disks in a spot test with the
same strain. This concept was expanded by
the development of a set of tester strains that
detected different types of gene mutations in
Salmonella typhimurium (Whitfield et al. 1966)
and in the fungus Neurospora crassa (Malling
1966a). Many in vitro mutagenicity assays were
developed throughout this period, including
the ad-3 forward-mutation assay in V. crassa
(de Serres and Kolmark 1958); cytogenetic
assays (Kihlman 1966); Hprt (hypoxanthine-
guanine phosphoribosyltransferase) assays
in V79 (Chu and Malling 1968) and CHO
cells (Hsie et al. 1975); the 7%*~ (thymidine
kinase) assay in mouse lymphoma cells (Clive
et al. 1972); and assays in yeast (Zimmermann
1971). The development of these and subse-
quent assays in mammalian cells and 7 vivo
was predicated on the notion that mutagenicity
results in these systems would be more relevant
to humans than would those from bacteria.
Despite concerted efforts, few mutagens
beyond direct-acting alkylating agents were
discovered initially with these assays, and
known rodent carcinogens other than direct-
acting alkylating agents were largely negative in
these assays. However, as reviewed by Brusick
(1989), a paradigm shift began when Malling
(1966b) used a hydroxylating mixture to acti-
vate diethyl- and dimethylnitrosamine, which
were not mutagenic iz vitro, to metabolites
that were mutagenic in N. crassa. Building
on this observation, as well as on the work of
Miller and Miller (1971) and in consultation
with H. Gelboin at NIH/NCI, Malling (1971)
then coupled the Sa/monella mutagenicity assay
with #n vitro metabolic activation composed
of the supernatant from mouse liver homoge-
nate centrifuged at 30,000 x ¢ (microsomes)
plus cofactors. Using this microsomal acti-
vation mixture, Malling (1971) showed
that dimethylnitrosamine was mutagenic in
Salmonella in a liquid-suspension assay, result-
ing in the first version of what would later be
called the Salmonella/mammalian microsome
mutagenicity assay. The host-mediated assay
provided additional evidence that carcinogens
could be mutagens after mammalian metabo-
lism (Legator and Malling 1971). Ames
et al. (1972) then showed that DNA-reactive
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metabolites of known carcinogens were muta-
genic (no metabolic activation was used); in
that paper, the authors also introduced the
plate-incorporation version of the assay, where
the bacteria and chemical were combined in
the top agar on the Petri plate.

The connection between mutagenesis and
carcinogenesis developed further when Ames
et al. (1973a) combined their Salmonella tester
strains, the test chemical, and the supernatant
from a 9,000 x g centrifugation of rat liver
homogenate (S9 fraction) along with cofactors,
as described by Garner et al. (1972), together
in the top agar and showed that a variety of
heretofore nonmutagenic rodent carcinogens
were, in fact, mutagenic after metabolic activa-
tion. This plate-incorporation version of the
Salmonella/mammalian microsome mutagen-
icity assay became a standard that is still in
use today. Various modifications, including
reduced nucleotide-excision repair, enhanced
cell-wall permeability (Ames et al. 1973b),
and enhanced error-prone repair achieved by
the introduction of a plasmid [as suggested
by MacPhee (1989)], combined to make for
a highly sensitive test system (Maron and
Ames 1983). Consequently, a new paradigm
emerged within just a few years that led to an
entirely new approach to carcinogen prediction
and testing. This spurred the use of in vitro
assays for mutagenicity in bacteria and mam-
malian cells as predictors of potential rodent
and human carcinogens (Tennant et al. 1987),
culminating in the current genetic toxicity test
battery (Eastmond et al. 2009).

Decades of research have shown that muta-
genesis is a critical component of carcinogenesis,
based on a range of evidence including muta-
tion spectra (Dogliotti et al. 1998; Hainaut
and Wiman 2009) and genomic sequencing of
tumors (Wood et al. 2007; Parsons et al. 2008).
Thus, now it is difficult to recall that once it was
somewhat bold to propose that there was any
direct connection between the two processes
(Knudson 1973; Miller and Miller 1971). Prior
to 1972, it was not yet clear that the electro-
philicity of some chemical carcinogens had a
necessary role in the potential mutagenic activ-
ity of such compounds or even that DNA, as
opposed to protein, was the ultimate target of
carcinogens (Miller 1970).

Although sound theoretical reasons existed
for proposing that carcinogens might act
through a mutagenic mechanism, a compelling
demonstration of this connection did not yet
exist (Miller and Miller 1971). In fact, muta-
genesis shared the stage with other likely mech-
anisms, including epigenetic changes (Miller
1970; Miller and Miller 1971), altered expres-
sion of an integrated viral genome (Tordaro and
Huebner 1972), or alteration of immunological
factors by carcinogens, permitting the forma-
tion and growth of tumors (Baldwin 1973).
Of course, time has shown that all of the above

mechanisms are important, especially epigenetic
mechanisms (Jones and Baylin 2007), which
may be particularly relevant for nonmutagenic
carcinogens. Given the much broader range of
biology that future assays will detect, new para-
digm shifts will emerge in other areas of toxicol-
ogy from 21st century assays.

Paradigm Shift ll: Recognition
of Ubiquitous Mutagenic
Activity in the Environment

When Ames (1971) first introduced the assay,
he stated “I will be glad to mail the strains
to people desiring them and to serve as a
clearinghouse for new and improved bacte-
rial tester strains.” Consequently, by the late
1970s, > 2,000 laboratories around the world
had requested the Salmonella tester strains to
initiate studies in environmental mutagen-
esis (Ames 1979). The fact that neither Ames
nor his employer (University of California-
Berkeley) patented the strains and that he
made them freely available facilitated their
use and dissemination throughout academic,
industrial, and government laboratories
worldwide—promoting the development of
many creative uses and modifications of the
assay. Creative uses may also emerge from
21st century assays, especially those developed
in the public sector, which would have some
probability of being disseminated freely.

The initial uses of the Salmonella assay led
to the startling (at the time) recognition that
our environment is replete with mutagens,
including fungal toxins, combustion emissions,
industrial chemicals, and drugs. The Sabmonella
assay was essential to this effort, providing the
means by which researchers discovered for the
first time that much of our environment had
mutagenic activity, including cigarette smoke
(Kier et al. 1974), urban air (Talcott and
Wei 1977; Tokiwa et al. 1977), river water
(Pelon et al. 1977), drinking water (Loper et al.
1978), food (Sugimura et al. 1977), and soil
(Goggelmann and Spitzauer 1983). The assay
was used to show that even people could have
systemic mutagenic activity detectable in urine
after smoking (Yamasaki and Ames 1977) or
after eating fried meat (Baker et al. 1982).
Decades of studies have shown that nearly all
urban air samples tested (Claxton et al. 2004;
Claxton and Woodall 2007), drinking water
(Richardson et al. 2007), soil (White and
Claxton 2004), and house dust (Maertens et al.
2004) are mutagenic. These reviews document
that at least 40-50% of the papers published
thus far on the genotoxicity of, for example,
air, soil, water, and house dust have used the
Salmonella assay, and they show that the vast
majority of contemporary studies rely almost
exclusively on the Salmonella assay for muta-
genicity assessments of environmental media.

The realization that much of the environ-
ment had mutagenic activity was unanticipated
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by most researchers and posed a challenge
to environmental scientists, public health
authorities, and regulators. As 21st century
toxicology proceeds, previously unrecognized,
ubiquitous toxicities in our environment may
be discovered—beyond findings of mutagen-
icity and potential carcinogenicity—and a
new paradigm of toxicity effects may emerge
(Bockelheide and Campion 2010). Regulators
and public health authorities may have to
expand or reconsider their approaches based
on the results from such assays.

How the Salmonella Assay
Has Been Used

Published data. We searched three publica-
tion databases [PubMed (http://www.ncbi.
nlm.nih.gov/pubmed/), Scopus (htep://
www.scopus.com/home.url), and Web of
Knowledge (http://apps.isiknowledge.com/)],
and we found 10,169 unique publications
dealing with the Salmonella assay. This was
accomplished by searching each database for
“Ames test OR Salmonella mutagen.” This
gave 11,064 responses in PubMed, 13,694 in
Scopus, and 3,453 in the Web of Knowledge.
Although it is likely that not all references
were found in this search, the number of refer-
ences retrieved should give a good sampling
of trends. We merged the citations into an
EndNote (Thomson Reuters, New York, NY)
database, and we deleted duplicates based on
the same first author name, journal name,
journal year, volume, and page number. We
examined the remaining information indi-
vidually to eliminate additional duplicates,
non-Salmonella mutagenicity papers, abstracts,
and papers that seemed to refer to the assay
only tangentially. Then we categorized papers
by key words/phrases that reflected how the
assay was used or discussed within the context
of the paper. The final database had 10,169
publications sorted into 7 major categories
and 20 subcategories. A publication was
often included in more than one category/
subcategory based on the nature of that pub-
lication. The reference database is available
in Supplemental Material (doi:10.1289/
ehp.1002336).

Figure 1A shows the numbers of publica-
tions per year that have used the Salmonella
assay as well as the other gene-mutation
assays developed near the same time, includ-
ing those in mammalian cells. The number
of publications using the Salmonella assay
rose dramatically, peaking at approximately
500 papers/year in the early 1980s, but has
declined gradually to a rather constant level of
approximately 200 papers/year during the past
decade. Other assays rose to approximately
10-20 papers/year, with the mouse lymphoma
Tk~ assay remaining at that level today.

Subsequently, newer genotoxicity assays
became popular, and the number of publications
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for these are shown in Figure 1B. By far, the
comet assay has the highest surge in usage and
is just now starting to plateau. The micronu-
cleus assays also are prominent, with approxi-
mately 100 papers/year being published
consistently for the past 20 years. The publica-
tion frequency for papers using micronucleus
assays has surpassed those using in vitro chro-
mosome aberration assays, which peaked in the
mid-1980s (data not shown).

With regard to the Salmonella assay, the
papers documenting the testing of agents
associated with environmental samples
(Figure 1C), as well as commerce, metabolism,
or personal exposure (Figure 1D), peaked in
the 1980s but still continue at a steady rate. A
closer look at the number of papers published
on various types of environmental samples
(Figure 1C) shows that ) relatively few publi-
cations have been associated with soil and sedi-
ment samples; &) papers looking at air samples
follow the overall declining trend seen since
1983; and ¢) publications dealing with water
reached a plateau starting in 1980 and have
remained stable. However, reports dealing
with natural substances have increased since
the mid-1990s. This increase is due largely to a
search for and analysis of antimutagens, mainly
from plant extracts. Figure 1D shows a decline
in the number of publications on mechanism
and metabolism; although there was a rise in
the personal-exposures subcategories until
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The stethoscope of genetic toxicology

the late 1980s (Figure 1D), the number has
since declined.

Unpublisbed data. For a variety of reasons,
little toxicological data have either been gener-
ated or are available publically for a large pro-
portion of compounds in commercial use. For
example, toxicological data are available for
only 7% of high-production-volume chemicals
(> 1 million pounds/year) (Guth et al. 2007)
and for only a fraction of regulated industrial
chemicals (Schwarzman and Wilson 2009;
Wilson and Schwarzman 2009). The few pub-
lications dealing with commercial substances
(Figure 1D) likely reflect the fact that such
data are proprietary. In the U.S. EPA New
Chemicals Program, approximately 50,000
premanufacturing notice (PMN) cases have
been received since 1979 when the program
began; however, only 10% (4,997) have
mutagenicity data, with 87% of these (4,351)
having Salmonella assay data (Cimino MC,
personal communication). Thus, only 8.7% of
the 50,000 PMNs submitted during the past
30 years have Salmonella mutagenicity data,
almost none of which are available publically,
and approximately 2% of pre-1979 PMNs
have been reviewed for the need for toxicologi-
cal data (Guth et al. 2007).

To estimate the percentage of commer-
cial chemicals that are mutagens, Zeiger
and Margolin (2000) assembled randomly
100 chemicals in commercial use, which
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Figure 1. Peer-reviewed journal articles published per year for genetic toxicology bioassays.
(A) Publications for the classical gene mutation assays [Salmonella assay, E. coli mutagenicity assays
(E. coli WP2), Hprt assays in V79 and CHO cells or HPRT in TK6 cells (HPRT), and the mouse lymphoma
Tk*~ assay. (B ') Publications for all micronucleus (MN) assays, bone-marrow MN, and comet assays.
(C) Publications for the Salmonella assay involving environmental substances (air, water, natural products,
soil, and sediments). (D) Publications for the Sa/monella assay involving various categories of studies
(mechanisms and metabolism, environmental samples, personal exposure studies, commerce, and
chemistry). The reference database is available in Supplemental Material (doi:10.1289/ehp.1002336).
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included 46 organics in highest production
in the United States (inorganic and elemen-
tal compounds were not included among the
100 chemicals), and evaluated them for muta-
genicity in the Salmonella assay. They found
that 22% of the total 100 compounds were
mutagenic, and 20% of the subset of 46 high-
production compounds were mutagenic. In the
absence of required testing and reporting (Guth
et al. 2007; Schwarzman and Wilson 2009),
these data are the best estimates available
regarding the proportions of mutagens among
organic compounds in current commercial use.
Improved estimates may emerge after potential
changes to the Toxic Substances Control Act
(TSCA) (Birnbaum 2010; U.S. EPA 2010b;
Wilson and Schwarzman 2009).

The U.S. Food and Drug Administration
(FDA) Center for Drug Evaluation and
Research (CDER) program does not keep
cumulative data for each assay submitted,
largely because each submission is usually
considered solely on the basis of the informa-
tion within it (Benz RD, personal commu-
nication). It must be assumed, however, that
the pharmaceutical industry also has tested
thousands of substances in the Salmonella
assay. In an analysis using the Physicians’ Desk
Reference from 1999 through 2008, Snyder
(2009) compiled the mutagenicity of > 500
marketed drugs, excluding the cytotoxic anti-
cancer and antivirals, nucleosides, steroids,
and biologicals. He found that approximately
7% (38/525) of these drugs were mutagenic
in bacterial assays (data from either E. coli or
Salmonella assays); this small percentage is
likely due to the extensive early screening in
the Salmonella assay to eliminate mutagenic
molecules from further development.

There are a few reports of environmental
monitoring programs using the Salmonella
assay, such as the 20-year program on surface-
water mutagenicity in Brazil (Umbuzeiro et al.
2001). However, such monitoring is rarely
done and almost never reported in the peer-
reviewed literature, although the Brazilian
data are available online from the Companhia
Ambiental do Estado de Sao Paulo (CETESB)
(2010). Therefore, the large number of agents
whose test results in the Salmonella assay have
been published may not reflect either the
equally large—or larger—number of propri-
etary chemicals tested by the pharmaceuti-
cal and chemical industries or environmental
monitoring data, which are not published.

The Salmonella Assay as

a Model for 21st Century
Toxicology Assays

Because of its simplicity, cost effectiveness,
flexibility, and large validated database, the
Salmonella assay is an ideal model to con-
sider in the development of equally reliable
in vitro toxicology assays for the 21st century.
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The predictivity, specificity, and sensitivity
of the Salmonella assay have been validated
against selected other mutagenicity assays and
rodent carcinogenicity data (Tennant et al.
1987). Likewise, new HTS assays will need
to be validated against something (Hartung
2009a), and one possibility is to measure
some end points against the Salmonella assay
(Schoonen et al. 2009). As outlined by Zeiger
(2003), there are fundamental procedures to
consider when developing, validating, and
ultimately accepting new assays, and below we
highlight some ways in which the Salmonella
assay serves as a model for this process.
Standard procedures, quality assurance,
and statistical assessment. Soon after the intro-
duction and widespread use of the Salmonella
assay, researchers recognized the need for
standardized procedures. Consequently, Ames
published methods papers (Ames et al. 1975;
Maron and Ames 1983), and the procedures
were quickly adopted by the mutagenesis
community. Procedures included the use of
positive and negative controls, standard proce-
dures for performing the assay, preparation of
S9 mix, checking the tester strains for genetic
and physiological stability, and evaluating
the results statistically (Bernstein et al. 1982;
Claxton et al. 1984, 1987; Kim and Margolin
1999; Margolin et al. 1981; McCann et al.
1984; Stead et al. 1981). Although positive
controls and metabolic activation were gener-
ally missing from some first-generation HTS
assays, these and other issues are being con-
sidered and corrected in current and future
iterations of the ToxCast and Tox21 assays
(Hartung 2009a, 2009b; Huang et al. 2009;
Kavlock et al. 2008; Westerink et al. 2010),
as well as for toxicogenomic assays (Ellinger-
Ziegelbauer et al. 2009). As noted above, even
the early versions of the Salmonella assay did
not incorporate metabolic activation (because
it had not yet been developed). Despite these
limitations, initial analyses of data from
ToxCast Phase 1 have identified those chem-
icals able to induce oxidative stress as evi-
denced by Nrf2 activity (Martin et al. 2010).
Structure—activity analysis (SAR). Data
from the Salmonella assay were used by Ashby
(1985) to identify structural alerts for poten-
tial carcinogenicity, providing critical data for
the development of computerized structure—
activity methods for carcinogenicity predic-
tion (Richard 1998). These methods are still
used widely within the chemical, pharmaceuti-
cal, and regulatory communities (Benfenati
et al. 2009). Claxton et al. (1988) examined
Salmonella assay data in the peer-reviewed
literature for individual chemicals, classified
the chemicals by an International Union of
Pure and Applied Chemistry chemical class
scheme, and found that mutagenicity in the
Salmonella assay was highly predictive of
rodent carcinogenicity for some chemical

classes, such as aromatic amines, polycyclic aro-
matic hydrocarbons, and nitroarenes, but was
less predictive for others, such as chlorinated
organics. Ashby and Tennant (1988) noted
that for 222 chemicals evaluated by the NTP,
data from the Salmonella assay, combined with
structural alerts and a more limited protocol
for the rodent cancer bioassay, permitted the
detection of trans-species/multiple-site rodent
carcinogens, which are likely human carcino-
gens (Ashby and Paton 1993; Tennant 1993).
Building on this past success, current
efforts still rely on Salmonella assay data and
are extending the analyses using newly devel-
oped computational methods and structural
features. For example, Hansen et al. (2009)
assembled a benchmark database containing
6,500 chemicals with Salmonella assay data
along with structural information [Simplified
Molecular Input Line Entry Specifications
(SMILES)] to develop a prediction model that
outperforms a variety of commercial predictive
tools. Yang et al. (2008) compiled a group of
2,428 compounds, each of which has structural
information and data for six mutagenicity tests,
and showed that the percentage of industrial
chemicals that were mutagenic was greater than
that of chemicals used as drugs or food ingredi-
ents. The incorporation of chemical structure
into the DSSTox EPA ToxCast continues to
grow (Houck et al. 2008), and this structural
and toxicology database will enable data from
HTS assays to be used for SAR as Salmonella
assay data have been used for decades.
Reproducibility and transferability of the
assay across laboratories. High reproducibil-
ity of an assay allows results to be compared
not only within the same laboratory over time
but also among laboratories. To address this
issue, a set of international, collaborative test-
ing programs was established to evaluate the
Salmonella assay as well as several other muta-
genicity assays using coded chemicals from the
same lot (Ashby et al. 1985, 1988; de Serres
et al. 1981) and standard protocols (Dunkel
et al. 1984, 1985; Margolin et al. 1984;
Piegorsch and Zeiger 1991). These compara-
tive studies paved the way for the establish-
ment of standard methods and procedures
for selected mutagenicity assays that are still
largely in place. A similar international effort
was established for the evaluation of standards
of complex mixtures in the Salmonella assay
(Claxton et al. 1992; Lewtas et al. 1992).
Concurrently, the establishment of the
U.S. EPA GENE-TOX program (Ray et al.
1987; Waters and Auletta 1981) provided,
to our knowledge, the first self-assessment of
the literature in any field of toxicology—in
this case, genetic toxicology. This enormous
effort (Waters 1994) involved 196 scientists
who critically read all of the papers published
on each of 23 assays, resulting in 41 compre-
hensive, published reviews. The consequence
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of this effort was that out of nearly 200 assays,
the mutagenesis community agreed on the
general use of a subset for routine use, includ-
ing, for example, the protocols, publication
requirements, and use of positive and negative
controls, much of which is reflected in the
current genotoxicity test battery (Eastmond
et al. 2009).

As a plethora of new assays emerge over
the coming years, a similar self-assessment
being organized by the Transatlantic Think
Tank of Toxicology (Hartung 2009a) will be
invaluable. Just as with the self-assessment by
the GENE-TOX program, it will likely result
in the acceptance of just a few assays, as well as
the establishment of the standards, protocols,
interpretation, and publication requirements
for those assays, which will provide a test bat-
tery that will serve the regulatory community
well in the coming years.

Testing. As reviewed by Zeiger (2004),
many factors led to the initial effort of the U.S.
government, in particular, M. Legator at the
FDA, to sponsor mutagenicity testing in 1971,
followed by numerous contracts in the ensu-
ing years. Ames himself published an exten-
sive testing and validation study early on in
which he used his assay to assess the mutagen-
icity of 300 compounds (McCann et al. 1975;
McCann and Ames 1976). This effort was fol-
lowed soon by other screening studies involv-
ing the Salmonella and other assays (Bruce
and Heddle 1979; Ishidate and Odashima
1977; Nagao et al. 1978; Purchase et al. 1978;
Rinkus and Legator 1979). The NIEHS/
NTP mounted the most comprehensive effort
in testing, involving the comparison of four
mutagenicity assays along with rodent carcino-
genicity data (Tennant et al. 1987). This effort
and subsequent analyses (Kirkland et al. 2005;
Zeiger 1998) have shown that the Salmonella
assay alone, in the absence of a test battery, is
reasonably predictive of rodent carcinogenicity.
Among a group of chemicals of mixed chemi-
cal class, a greater percentage of the compounds
that are mutagenic in the Salmonella assay are
likely to be rodent carcinogens compared with
the percentage of nonmutagens likely to be
noncarcinogens (Kirkland et al. 2005; Zeiger
1998). At present, there are no reliable meth-
ods to assess Salmonella-negative compounds
for potential carcinogenicity. This conclusion
has prompted discussion, pro and con, regard-
ing the option of eliminating the mammalian
cell assays from the genotoxicity test battery
or the inclusion of other assays (Elespuru et al.
2009; Kirkland et al. 2007).

This development is ironic, as efforts pro-
ceed swiftly to develop high-throughput assays
in mammalian cells (Kavlock et al. 2008;
Westerink et al. 2010). Despite the theoreti-
cal and scientific relevance of mammalian cell
assays, their prognostic value may, in fact, be
limited. For example, the Salmonella assay is
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less susceptible than mammalian cell assays to
artifacts resulting from high toxicity, pH shifts,
and osmotic effects (Kirkland et al. 2007).
Nonetheless, Zhu et al. (2008) showed that
using HT'S cell viability data for 1,408 com-
pounds greatly improved quantitative struc-
ture—activity relationship (QSAR) predictions
for rodent carcinogenicity. They suggest that
an approach using improved models, coupled
with HTS assay data and structural features of
the compounds, might partially replace i vivo
toxicity testing. Even some 77 vivo assays may
be of little or no added value, as indicated
by the inability of the mouse bone-marrow
micronucleus assay to improve carcinogen pre-
diction beyond that of the Salmonella assay
alone (Zeiger 1998).

The history of genetic toxicology demon-
strates that only assays that can be adopted
by many laboratories and validated through
extensive testing are of value for regulatory
purposes. Consequently, based on the testing
efforts described above, testing schemes were
put into law for testing new chemicals (U.S.
EPA 2010b), pesticides (U.S. EPA 2010a),
and new pharmaceuticals (FDA 2010). Recent
discussions have explored how new types of
assay data might have an impact on the reg-
ulation of genotoxic compounds (Elespuru
et al. 2009; Ge et al. 2007; Guyton et al. 2009;
Hartung 2009a, 2009b; Hartung and Daston
2009; Hartung and Rovida 2009; Hoppin and
Clapp 2005; Krewski et al. 2009; Meek and
Doull 2009; National Research Council 2007;
Service 2009). Many such issues will need to
be settled before legislation of the type above
could ever be instituted for 21st century assays.

Assay flexibility. The flexibility of the
Salmonella assay has allowed the assay to be
used in a variety of protocols with a variety of
agents, including complex mixtures, gases, and
radiation. Current HTS assays use nonvolatile,
single agents that are soluble in dimethyl sul-
foxide, but agents with other characteristics
(e.g., water-soluble compounds, gases) will
need to be tested (Kavlock et al. 2008;
Tice RR, personal communication). Over the
years, this recognition for the Salmonella assay
resulted in a plethora of modifications that
have enabled the assay to be used in an almost
infinite variety of ways. These include modifi-
cations permitting #) the use of small amounts
of sample (Diehl et al. 2000; Flamand et al.
2001; Green et al. 1977; Houk et al. 1989;
Kado et al. 1983) in semi-high-throughput
modes involving colorimetric analysis (Kamber
et al. 2009; Umbuzeiro et al. 2010) and fluo-
rescent assays (Aubrecht et al. 2007; Cariello
et al. 1998); &) the testing of volatiles and
gases (Baden et al. 1976; Hughes et al. 1987);
¢) the testing of body fluids, including urine
(Cernd and Pastorkova 2002), feces (de Kok
and van Maanen 2000), breast milk (Phillips
et al. 2002; Thompson et al. 2002), breast
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nipple aspirates (Klein et al. 2001), and cervi-
cal mucus (Holly et al. 1993); &) the testing
of all types of complex mixtures, including
air, soil, water, house dust, and combustion
emissions (see “Paradigm Shift II” above), and
fried meat (Knize and Felton 2005); ¢) molecu-
lar (DeMarini 2000; Koch et al. 1994) and
genomic analyses (Porwollik et al. 2001; Ward
et al. 2010); and f) the evaluation of muta-
genicity inside the International Space Station
(Rabbow et al. 2003). This flexibility has per-
mitted the Salmonella assay to be used for
almost every conceivable type of environmental
and molecular epidemiology study.

In addition, numerous modifications of
the tester strains or testing conditions have
permitted researchers to explore the role of
metabolism and to detect the mutagenicity of
specific chemical classes of substances (Claxton
and Barnes 1981; Gee et al. 1994; Hagiwara
et al. 1993; Hayashida et al. 1976; Houk and
Claxton 1986; Houk et al. 1989; Josephy
2002; Prival and Mitchell 1982; Reid et al.
1984; Rosenkranz and Mermelstein 1983;
Watanabe et al. 1990). Whether it has been
in the development of commercial products
(Zeiger and Margolin 2000), the evaluation of
industrial products and wastes (Aguayo et al.
2004; Bessi et al. 1992; Brooks et al. 1998;
Claxton et al. 1998; Ohe et al. 2004), or sub-
stances known to contaminate the environ-
ment (Chen and White 2004; Claxton et al.
2004; Claxton and Woodall 2007; White and
Claxton 2004), the Salmonella assay has been
the screening test of choice in genetic toxicol-
ogy for nearly four decades. Perhaps a new
assay will emerge in the coming years that can
assess a comprehensive set of predictive biologi-
cal changes and also have the range of flexibility
exhibited by the Salmonella assay.

Standardization of sample preparation.
The flexibility of the Salmonella assay
prompted the development of methods to
prepare environmental samples for the assay
(Hewitt and Marvin 2005; Marvin and Hewitt
2007). This included solvents and materials for
the delivery of substances to the assay, prepa-
ration of environmental and epidemiological
samples, and methods for the concentration
and determination of doses for testing gases.
The coupling of chemical methods with the
Salmonella assay enabled extensive use of the
assay for bioassay-directed chemical fraction-
ation to identify chemical classes of mutagens
or individual mutagens (Austin et al. 1985;
Brooks et al. 1998; Lewtas 1993; Lewtas
et al. 1990; Oliveira et al. 2006), permitting
the discovery of many environmental muta-
gens, such as PBTA (2-phenylbenzotriazole)
in surface waters (Nukaya et al. 1997), MX
(3-chloro-4-(dichloromethyl)-5-hydroxy-2-
(5H)-furanone) in drinking water (Hemming
et al. 1986), and PhIP (2-amino-1-methyl-6-
phenylimidazo([4,5-6]pyridine) in fried meat

1519




Claxton et al.

(Felton et al. 1986). The Tox21 program is
already testing herbal agents and has plans
to test complex mixtures and environmental
samples (Tice RR, personal communication).
Coupled with bioassay-directed fractionation,
this effort could provide new opportunities for
identifying environmental hazards and char-
acterizing health effects from environmental
pollution.

Conclusions

If the Salmonella assay can be likened to the
stethoscope, then ample studies have con-
firmed repeatedly the invaluable role that the
Salmonella assay alone plays in identifying
rodent (Kirkland et al. 2005; Yang et al. 2008;
Zeiger 1998) and human (Morita et al. 1997)
carcinogens. A physician may not make a final
diagnosis based solely on the sounds heard
through the stethoscope, but in many cases,
such sounds prove to be invaluable in formu-
lating the confirmatory procedures. Perhaps
some of the emerging HTS (Kavlock et al.
2008), toxicogenomic (Ellinger-Ziegelbauer
et al. 2009), and short-term rodent assays
(Jacobson-Kram 2010) can be likened to the
cardiology methods that would be used to fol-
low up anomalies detected by the stethoscope
of genetic toxicology, i.e., the Salmonella assay.

Because of its historical database, intrinsic
value, flexibility, and low cost, the Salmonella
assay will not soon be replaced for the hazard
identification of new chemicals or environmen-
tal samples. Indeed, chemicals whose annual
production exceeds 1 ton/year (- 30,000
compounds) are scheduled to be tested in the
Salmonella assay under the European Union’s
Registration, Evaluation, Authorization, and
Restriction of Chemicals (REACH) legisla-
tion (Poth and Jaeger 2007). Experience with
the Salmonella assay should serve as a model
for the development and deployment of new
approaches to predict and understand the toxi-
cology of substances. The use of the Salmonella
assay may not be as lasting as that of the stetho-
scope, but the Salmonella assay has made a sig-
nificant mark on the history of toxicology and
has an indispensable role to play in the foresee-
able future of 21st century toxicology.
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